Recent Advances in the Management of Hyperkalemia

The Role of Newer Treatment Strategies to Improve Patient Outcomes

Biff F. Palmer, MD
Professor of Internal Medicine
Distinguished Teaching Professor
University of Texas Southwestern Medical Center
Dallas, Texas
Disclosures

Biff F. Palmer, MD, has no financial interests/relationships or affiliations in relation to this activity.
Hyperkalemia 101
The Burden and Current Standards of Care
Hyperkalemia is a serious medical problem. Patients are usually asymptomatic and do not realize they have it. Hyperkalemia may lead to:

1. Life-threatening arrhythmias
2. Sudden cardiac death

References:
Variability in What Defines “Hyperkalemia”¹⁻³

<table>
<thead>
<tr>
<th>Stage</th>
<th>Serum K⁺, mEq/L</th>
<th>Risks</th>
</tr>
</thead>
</table>
| Mild | >5.0-5.9 | • ↑ risk of renal AE
 | | • ↑ mortality with chronic illnesses patients | |
| Moderate | 6.0-7.0 | • Cardiac arrhythmias |
| Severe | >7.0 | • Cardiac arrhythmias |

Serum K⁺ levels of 5.0, 5.5, or 6.0 mEq/L are commonly used cutoffs for ULN

K⁺: potassium; ULN: upper limit of normal.
Prevalence of Hyperkalemia

General population
Prevalence is 2% to 3% in the general population.\(^1\)

All hospitalized patients
- 1% to 10% depending on the definition of hyperkalemia
- 8% to 10% when hyperkalemia is defined as ≥6 mmol/L

Patients with CKD
Prevalence in patients with stage ≥3 CKD ranges from 5% to 50% and increases as kidney function declines.\(^2\)

CKD: chronic kidney disease.
Hyperkalemia: Effect on Healthcare Costs¹,²

- Average Medicare length of stay was 3.2 days; mean charges of $24,085 per stay
- One-third of patients were discharged to another short-term hospital, institution, or home healthcare
- In 2011, estimated total annual hospital charges for Medicare admissions with hyperkalemia as primary diagnosis were ~$697 million

What Causes Elevated Serum K⁺?¹,²

K⁺ redistribution
- Strenuous exercise
- Burns, crush injury
- Hemolysis
- Tumor lysis syndrome
- Hyperglycemia

Exogenous sources of K⁺
- Medications
- Blood
- Diet and K⁺ supplements
- Pseudohyperkalemia

Reduced K⁺ excretion
- Impaired renal function
- Diabetes mellitus
- Heart failure
- Obstructive uropathy
- Hypoaldosteronism
- RAAS inhibitors

RAAS: renin–angiotensin–aldosterone system.
Medications Associated With Hyperkalemia

<table>
<thead>
<tr>
<th>Drug Class</th>
<th>Mechanism</th>
<th>Example(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEis</td>
<td>Inhibit conversion of angiotensin I to angiotensin II</td>
<td>Captopril, lisinopril, etc</td>
</tr>
<tr>
<td>ARBs</td>
<td>Inhibit activation of angiotensin II receptor by angiotensin II</td>
<td>Losartan, irbesartan, etc</td>
</tr>
<tr>
<td>Aldosterone antagonists</td>
<td>Block aldosterone receptor activation</td>
<td>Spironolactone, eplerenone</td>
</tr>
<tr>
<td>β-adrenergic receptor blockers</td>
<td>Inhibit renin release</td>
<td>Propranolol, metoprolol, atenolol</td>
</tr>
<tr>
<td>Digitalis glycoside</td>
<td>Inhibits Na⁺-K⁺-ATPase; necessary for K⁺ secretion</td>
<td>Digoxin</td>
</tr>
<tr>
<td>Heparin</td>
<td>Reduces production of aldosterone</td>
<td>Heparin sodium</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Inhibit synthesis of prostaglandin E and prostacyclin, inhibiting renin release</td>
<td>Ibuprofen, etc</td>
</tr>
<tr>
<td>K⁺-sparing diuretics</td>
<td>Block collecting duct apical Na⁺ channel, decreasing gradient for K⁺ secretion</td>
<td>Amiloride, triamterene</td>
</tr>
<tr>
<td>Other</td>
<td>Block collecting duct apical Na⁺ channel, decreasing gradient for K⁺ secretion</td>
<td>Trimethoprim, pentamidine</td>
</tr>
</tbody>
</table>

ACEi: angiotensin-converting enzyme inhibitor; ARB: angiotensin II receptor blocker; NSAID: nonsteroidal anti-inflammatory drug.

Populations at Risk\(^1,2\)

- **Advanced Stage of CKD (Stage ≥3)**: Reduced excretion
- **Aged >65 Years**
 - Hyporeninemic hypoaldosteronism
- **Diabetes**
 - Renin deficiency in diabetic nephropathy
- **Heart Failure**
 - Decreased delivery of Na\(^+\) to the distal nephron
- **Taking Certain Medications**
 - ACEis, ARBs, NSAIDs, etc

Na\(^+\): sodium.
Adjusted Mortality by Serum K$^+$ Level, Age, and Comorbid Illness Status1

Increases in mortality remained after adjustments for demographic characteristics and comorbidities.

a Shading represents 95% confidence limits.

All-Cause Mortality Associated With Hyperkalemia

Spline analysis adjusted for covariates, showing serum K$^+$ as a continuous variable with all-cause mortality over the distribution of K$^+$ values (2.5-8.0 mEq/L) in heart failure, CKD, DM, and combined cohort compared with controls.

EMR data analysis from geographically diverse US population (N = 911,698) receiving medical care; relationship with mortality over 18-month period.

Hyperkalemia: Typically Occurs in Patients With CKD

Real-World Observational Studies

<table>
<thead>
<tr>
<th>Patient Population (eGFR, mL/min/1.73m²)</th>
<th>Rate, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No CKD</td>
<td>8.9</td>
</tr>
<tr>
<td>Stage 3 (30-59)</td>
<td>20.7</td>
</tr>
<tr>
<td>Stage 4 (15-29)</td>
<td>42.1</td>
</tr>
<tr>
<td>Stage 5 (<15)</td>
<td>56.7</td>
</tr>
</tbody>
</table>

Veteran's Health Administration National Cohort (N = 245,808)

Incidence per 100 Patient-Months

- No CKD
 - No RAASi: 1.77
 - RAASi: 7.67

- CKD
 - No RAASi: 8.22
 - RAASi: 2.30

*P < .0001 vs no CKD.
Association Between MRA Therapy and Risk of Readmission for Hyperkalemia

Hyperkalemia Readmission Among Patients With HFrEF

Cumulative Incidence, %

Days After Discharge

MRA Therapy
- No
- Yes

Gray Test $P < .001$

HFrEF: heart failure with reduced ejection fraction; MRA: mineralocorticoid receptor antagonists.
Hyperkalemia: Causes and Clinical Manifestation

Development of hyperkalemia requires a defect in one or more of the mechanisms that maintain K^+ homeostasis

- Decreased renal elimination (the most common cause)
- Increased K^+ load (dietary)
- Intracellular to extracellular shifts (uncommon)

Hyperkalemia is often asymptomatic and discovered on routine laboratory tests

Clinical manifestations of acute and chronic hyperkalemia are related to neuromuscular changes and cardiac arrhythmias

- Muscular weakness or flaccid paralysis
- Ileus
- Characteristic ECG changes

Serum K⁺ Levels and Associated ECG Changes

<table>
<thead>
<tr>
<th>Serum K⁺, mEq/L</th>
<th>Major ECG Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 to 6.5</td>
<td>Tall peaked T waves</td>
</tr>
<tr>
<td>6.5 to 7.5</td>
<td>Loss of P waves</td>
</tr>
<tr>
<td>7 to 8</td>
<td>Widened QRS complexes</td>
</tr>
<tr>
<td>8 to 10</td>
<td>Sine wave, ventricular arrhythmias, asystole</td>
</tr>
</tbody>
</table>

Conventional Options for Hyperkalemia Management

- Membrane stabilization
- K⁺ redistribution

Insulin
- K⁺ elimination
- Removal/reduction of drugs that increases serum K⁺

β2-adrenergic agonists

Ca²⁺ gluconate or chloride salt

Dialysis

RAASi reduction

Loop diuretics

Sodium bicarbonate

SPS

Low K⁺ diet

Emergent

Intermediate

Maintenance

Treatment options for hyperkalemia

RAASi: RAAS inhibitor; SPS: sodium polystyrene sulfonate.
Standard Treatment Options for Hyperkalemia Are Limited

<table>
<thead>
<tr>
<th>Acute Therapies<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Do not remove excess K<sup>+</sup></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dietary K<sup>+</sup> Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>• K<sup>+</sup> is common ingredient in many foods</td>
</tr>
<tr>
<td>• Limits healthy food choices</td>
</tr>
<tr>
<td>• Met by nonadherence</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sodium Polystyrene Sulfonate (SPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Uncertain efficacy (no rigorous clinical trials)</td>
</tr>
<tr>
<td>• Poor tolerability</td>
</tr>
<tr>
<td>• High rate of serious intestinal toxicity</td>
</tr>
<tr>
<td>• May not be effective without sorbitol; however, sorbitol has been reported to cause intestinal complications, including bowel necrosis and perforation in immunocompromised patients</td>
</tr>
</tbody>
</table>

^a IV calcium, sodium bicarbonate, insulin and dextrose, nebulized β-adrenergic agonists.
SPS: Warnings and Precautions Highlighted in FDA-Approved Label

<table>
<thead>
<tr>
<th>Approval Date</th>
<th>1958</th>
</tr>
</thead>
</table>
| **Warning** | Intestinal necrosis, which may be fatal, and other serious GI AEs (bleeding, ischemic colitis, perforation) have been reported in association with SPS use
 - Concomitant use of sorbitol with SPS has been implicated in cases of colonic intestinal necrosis |
| **Precaution**| SPS exchanges K⁺ for Na⁺, leading to Na⁺ volume overload
 • Use caution when administering SPS to patients who cannot tolerate even a small increase in Na⁺ loads (eg, severe congestive heart failure, severe hypertension, marked edema) |

SPS Associated With High Risk of Hospitalization for Serious GI Adverse Events

HR = 1.94 (95% CI: 1.10-3.41)
Take-Home Points

Hyperkalemia

- A complex clinical challenge, K^+ kills
- Comorbidities (CKD, diabetes, heart failure) place patients at high risk of hyperkalemia
 - In part, because the therapy (ie, RAASi) needed to treat the comorbidities increases the risk of hyperkalemia
- Therapeutic interventions in the ED to manage hyperkalemia aim at
 - Stabilization of cell membrane
 - Shifting K^+ intracellularly
 - Removal of K^+ from the body
Recent Advances in Hyperkalemia

The Role of Newer Treatment Strategies to Improve Patient Outcomes
Ideal Attributes of a K⁺ Binder

Clear and Sustained Efficacy
- Substantially lowers serum K⁺ levels
- Works in diverse populations (CKD, diabetes, heart failure, elderly, and combinations of these)
- Works in a matter of hours and maintains its efficacy long term (months to years)

Good Tolerability and Long-Term Safety
- Palatable drug with good patient acceptance of dose form
- Compatible with commonly used drugs in target population
- Low AE rates and clear long-term safety
Novel Methods of K^+ Elimination

- **Patiromer**
 - FDA approved in 2015

- **Sodium zirconium cyclosilicate (ZS-9)**
 - FDA approved in 2018

Limitation of use: These agents should not be used as emergency treatment for life-threatening hyperkalemia due to delayed onset of action.
Patiromer

- Orally administered
- Homogenous, spherical beads
- Nonabsorbed, cation exchange polymer that contains a Ca\(^{2+}\) counterion
- Increases fecal K\(^+\) excretion through binding of K\(^+\) in the GI tract, predominantly in lumen of colon, where concentration of K\(^+\) is highest
 - Binds K\(^+\) in exchange for Ca\(^{2+}\)

Ca\(^{2+}\): calcium.
OPAL-HK: Change in Serum K⁺ With Patiromer During Initial Period

- Secondary efficacy endpoint: 76% of patients had serum K⁺ in target range (3.8 to <5.1 mEq/L) at week 4

OPAL-HK: Controlling Hyperkalemia With Patiromer Enables Patients to Remain on RAASi Therapy

Randomized Withdrawal Phase Results

- Recurrence of hyperkalemia ($K^+ \geq 5.5$ mEq/L) occurred in 60% of placebo patients vs 15% of patients on patiromer ($P < .001$)

![Bar chart showing the percentage of patients requiring any adjustment of RAASi (down titration or discontinuation) for hyperkalemia at any time during Part B and receiving any dose of a RAASi at the end of Part B.]

AMETHYST-DN: Study Design

Open-label, randomized, dose-ranging, dose titration, 52-week (1-year) study (N = 306)

Patients with normokalemia who have T2DM and CKD with/without hypertension on ACEi, ARB (or both)

Primary endpoint: Mean change in serum K⁺ from baseline to week 4 or before initiation of dose titration

Compliance throughout the entire study ranged from 86.7% to 95.9% across dose groups and strata.
Adverse Reactions Reported in ≥2% of Patients in Patiromer Clinical Trials

<table>
<thead>
<tr>
<th>Adverse Reactions</th>
<th>Patients, % (N = 666)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypomagnesemia (serum Mg$^{2+}$ <1.4 mg/dL)</td>
<td>9.3</td>
</tr>
<tr>
<td>Constipation</td>
<td>7.2</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>4.8</td>
</tr>
<tr>
<td>Hypokalemia (serum K$^+$ <3.5 mEq/L)</td>
<td>4.7</td>
</tr>
<tr>
<td>Nausea</td>
<td>2.3</td>
</tr>
<tr>
<td>Abdominal discomfort</td>
<td>2.0</td>
</tr>
<tr>
<td>Flatulence</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Mg$^{2+}$: magnesium.

Patiromer Warnings and Precautions

<table>
<thead>
<tr>
<th>Approval Date</th>
<th>Precaution</th>
<th>Boxed Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2015</td>
<td>• Worsening of GI motility</td>
<td>• Patiromer binds to many orally administered medications, which could decrease their absorption and reduce their effectiveness</td>
</tr>
<tr>
<td></td>
<td>• Hypomagnesemia</td>
<td>• Choose patiromer or the other oral medication if adequate dosing separation is not possible</td>
</tr>
<tr>
<td></td>
<td>• Administer other oral medications (ie, metformin, levothyroxine, ciprofloxacin) at least 3 hours before or 3 hours after patiromer²</td>
<td></td>
</tr>
</tbody>
</table>

DIAMOND Study: Patiromer for Management of Hyperkalemia in Patients With Heart Failure Receiving RAASi Therapy

A Phase 3b Multicenter, Double-Blind, Placebo-Controlled Randomized Trial

Key eligibility criteria
- Hospitalization for heart failure (with or without CKD) within 12 months
- HFrEF (LVEF <40%)
- eGFR ≥30 mL/min/1.73m²
- History of current hyperkalemia at screening or history of hyperkalemia in the past year that led to a reduction/discontinuation of RAASi
- N = ~2,400 patients
- Top-line results are expected in 2022

Primary endpoint: time to first occurrence of cardiovascular death or cardiovascular hospitalization

eGFR: estimated glomerular filtration rate; LVEF: left ventricular ejection fraction.
Sodium Zirconium Cyclosilicate (ZS-9): Novel First-in-Class Compound Designed to Trap K^+{1}

- Orally administered, tasteless, odorless
- Non-absorbed, inorganic crystalline zirconium silicate compound
- Exchanges K^+ for H^+ and Na^+ in the intestine
 - High K^+ specificity attributable to chemical composition and diameter of the micropores
 - 125 times more selective for K^+ compared with SPS

Phase 3 ZS-9: Change in Serum K⁺ During Initial Period

- Normokalemia maintained in patients who received 5 g or 10 g of ZS-9
- K⁺ levels increased to hyperkalemic levels in placebo group
- When ZS-9 was discontinued, hyperkalemia redeveloped within 1 week

Phase 3 ZS-9: Change in Serum K⁺ During Initial Period (Cont’d)¹

Dose-Dependent Serum K⁺ Reduction Over 48 Hours in Patients With Heart Failure on RAASi

a P < .05.
HARMONIZE: Early Effects of ZS-9 on Serum K⁺

- Mean starting K⁺: 5.55 mEq/L
- 0.2-, 0.4-, 0.5-mEq/L K⁺ decline at 1, 2, 4 hours, respectively ($P < .001$)
- Median time to K⁺ normalization: 2.2 hours
- 84% of patients normalized by 24 hours
- 98% of patients normalized by 48 hours

ZS-9 Adverse Reactions\(^1\)

<table>
<thead>
<tr>
<th>Adverse Reactions</th>
<th>Patients, % (N = 353)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peripheral edema</td>
<td>7.7</td>
</tr>
<tr>
<td>Edema requiring treatment with diuretics</td>
<td>4.2</td>
</tr>
<tr>
<td>Hypertension</td>
<td>7.0</td>
</tr>
<tr>
<td>Hypokalemia (serum K(^+) 3.0-3.5 mEq/L)</td>
<td>2.5</td>
</tr>
<tr>
<td>Doubling of serum creatinine</td>
<td>0.7</td>
</tr>
<tr>
<td>GI AEs</td>
<td><5.0</td>
</tr>
</tbody>
</table>

ZS-005 Study: Long-Term Safety-Efficacy of ZS-9 for Hyperkalemia

Open-Label, Single Arm, Two-Part Phase 3 Study

Key eligibility criteria
- Mean age: 64 years
- Mean eGFR: 47 mL/min/1.73m²
- No dietary/medication restrictions
- 65% of patients were on RAASi

Correction Phase (24-72 hours)
ZS-9 30 g/day
Mean serum K⁺ 4.8 mEq/L
(n = 751)

Maintenance Phase (12 months)
ZS-9 5 g/day, titrated (mean 7.2 g/day)
Mean serum K⁺ 4.7 mEq/L
(n = 746)

Primary endpoint: restoration of normal serum K⁺ values (3.5-5.0 mEq/L) during the correction phase and maintenance of serum K⁺ of 5.1 mEq/L during the maintenance phase

ZS-005 Study: Long-Term Management of Hyperkalemia With ZS-9

- ZS-9 achieved normokalemia during correction phase
- ZS-9 maintained normokalemia without substantial RAASi changes for ≤12 months

Summary of SPS, Patiromer, and ZS-9

<table>
<thead>
<tr>
<th></th>
<th>SPS</th>
<th>Patiromer</th>
<th>ZS-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism of action</td>
<td>Nonspecific cation binding in exchange for Na⁺</td>
<td>Nonspecific cation binding in exchange for Ca²⁺</td>
<td>Selective K⁺ binding in exchange for Na⁺ and H⁺</td>
</tr>
<tr>
<td>Time to normokalemia</td>
<td>Unconfirmed efficacy</td>
<td>Achieves normokalemia within 48 hours</td>
<td>84% of patients are normokalemic within 24 hours</td>
</tr>
<tr>
<td>Drug–drug interactions</td>
<td>Interactions with antacids, laxatives, digitalis, sorbitol, lithium, and thyroxine</td>
<td>Potential to alter other drug absorption (metformin, levothyroxine, and ciprofloxin); administer 3 hours before or after other medications</td>
<td>Median time to normalization is 2.2 hours³</td>
</tr>
<tr>
<td>Location of K⁺ binding</td>
<td>Colon</td>
<td>Colon</td>
<td>Colon</td>
</tr>
<tr>
<td>Safety/tolerability</td>
<td>Poor tolerability/adherence, associated with colonic necrosis, hypokalemia, electrolyte disturbances, and GI effects</td>
<td>Well tolerated but may cause constipation and possible hypomagnesemia</td>
<td>Well tolerated but may cause edema and mild to moderate GI effects</td>
</tr>
</tbody>
</table>

Transitions of Care

Potential source of error and miscommunication

Issues best avoided by upfront, mutually agreed upon structure and process

Should involve all who might administer care
- Family physicians, emergency physicians
- Hospitalists and internists
- Cardiologists
- Critical care specialists
- Nephrologists
Take-Home Points

Role of Novel Agents in Managing Hyperkalemia

• Both patiromer and ZS-9 are
 – Effective in reducing serum K^+ to normokalemic levels in patients with hyperkalemia
 – Well tolerated over 1 year without the risk of bowel necrosis that is associated with SPS
 – Effective and well tolerated in patients with heart failure; enable long-term use of RAASi
• Novel K^+-lowering strategies have the potential to improve the clinical management of hyperkalemia
• Preventing and managing hyperkalemia requires a multidisciplinary approach that entails
 – Reducing high-K^+ foods
 – Adjusting hyperkalemia-inducing medications
 – Adding medications that reduce hyperkalemia including novel K^+ binders
• Long-term monitoring and control can reduce K^+-related mortality
Clinical Case

Application of Newer Therapies in a Real-World Setting
Case Presentation: 66-Year-Old Man

History of T2DM, hypertension, and CKD

Presents with generalized weakness, nausea, vomiting, and dyspnea on exertion

Vital signs: heart rate, 100 BPM; BP, 170/110 mmHg; RR, 26 breaths/min; temperature, 35°C

Current Medications
- Hydralazine 100 mg three times a day; isosorbide mononitrate 60 mg once a day; lisinopril 5 mg; furosemide 40 mg twice a day; metoprolol SR 100 mg once a day; atorvastatin 80 mg once a day; insulin glargine 40 U/mL once a day; glimepiride 2 mg once a day
Considerations During Initial Presentation

What is the expected electrolyte abnormality?

What risk factor does this person have for hyperkalemia?
Case Presentation: Physical Examination

- Patient is uncomfortable but awake
- Crackles over the lower third of chest
- S3 on cardiac auscultation
- Generalized edema
- Diabetic with hypertensive retinopathy
Management Considerations

How would you manage the patient now?

What tests do you want to perform?
Case Presentation: Laboratory Results

Laboratory Results

- **K^+**: 5.6 mEq/L
- **Creatinine**: 2.2 mg/dL
- **eGFR**: 36 mL/min/1.73m²
- **HbA1c**: 7.8%
- **BNP**: 824
- **ECHO**: Diastolic dysfunction with an EF of 44% (1 month earlier)

- Discussed a low K^+ diet with patient and provided a handout on food to avoid or limit
- Changed diuretic to long-acting torsemide at 20 mg once a day for better BP
- Started patient on patiromer 8.4 g once a day to be taken at breakfast for 2 days for K^+ control, and then increased lisinopril to 20 mg once a day

BNP: brain natriuretic peptide; **ECHO**: echocardiogram.
Case Presentation: Next Steps

5 Days Later
- K⁺: 4.9 mEq/L
- Creatinine: 2.2 mg/dL
- eGFR: 35 mL/min/1.73m²
- BP: 140/90 mmHg

Started spironolactone 12.5 mg once a day

1 Week Later
- K⁺: 4.9 mEq/L
- eGFR: 33 mL/min/1.73m²
- Creatinine: 2.4 mg/dL
- BP: 128/80 mmHg (improved)

Patient reported only constipation

4 Months Later
- Repeated ECHO, EF 65%
- K⁺: 4.7 mEq/L
- eGFR: 33 mL/min/1.73m²
- Creatinine: 2.2 mg/dL
- BP: 128/80 mmHg (improved)

Patient had much better physical stamina and no dyspnea or weakness
AMBER Study: Patiromer to Enable Spironolactone Use in Patients With Resistant Hypertension and CKD¹

A Phase 2 Multicenter, Double-Blind, Placebo-Controlled Randomized Trial

Key eligibility criteria

- Age ≥18 years
- eGFR 25 to ≤45 mL/min/1.73m²
- Serum K⁺ 4.3-5.1 mEq/L
- Resistant hypertension: SBP of 135-160 mmHg during screening despite taking ≥3 antihypertensive drugs, including a diuretic, ACEi, or ARB

- Primary endpoint: patients who remained on spironolactone at week 12
- Secondary endpoints: systolic automated office BP at baseline and week 12; change in SBP from baseline

Spironolactone +
patiromer
(n = 147)

Spironolactone +
placebo
(n = 148)

AMBER Study: Patiromer to Enable Spironolactone Use in Patients With Resistant Hypertension and CKD (Cont'd)\(^1\)

Patiromer enabled more patients with resistant hypertension and CKD to continue treatment with spironolactone with less hyperkalemia

Predictors of Hyperkalemia Before Starting Therapy Derived From Trials1,2

- eGFR < 45 mL/min/1.73m2
- Serum K$^+$ > 4.5 mEq/L
- eGFR < 45 mL/min/1.73m2 plus serum K$^+$ > 4.5 mEq/L

Team-Based Approach: Identifying Patients at Risk for Hyperkalemia

- Know the risk factors and educate the patient
- Slow dose titration of RAASi agents
- Monitor K^+ closely when initiating therapy and after each dose adjustment
- Coordinate care
Standard Care for Chronic Hyperkalemia1,2

- Review medication history
- Titrate or discontinue RAASi
- Diuretic therapy
- K+ binder therapy
Patient Counseling for Hyperkalemia

- Low K+ diet
- Signs and symptoms of hyperkalemia
- Stay hydrated
- Avoid NSAIDs—for pain, use non-NSAIDs
- Medication adherence with K+ binders
Low K⁺ Diet Is the First Step in Chronic Management¹,²

Fruits
- Apricot, raw (2 medium) dried (5 halves)
- Avocado (1/4 whole)
- Banana (1/2 whole)
- Cantaloupe
- Dates (5 whole)
- Dried fruits
- Figs, dried
- Grapefruit juice
- Honeydew
- Kiwi (1 medium)
- Mango (1 medium)
- Nectarine (1 medium)
- Orange (1 medium)
- Orange juice

Vegetables
- Acorn squash
- Artichoke
- Bamboo shoots
- Baked beans
- Butternut squash
- Refried beans
- Beets, fresh then boiled
- Black beans
- Broccoli, cooked
- Brussels sprouts
- Chinese cabbage
- Carrots, raw
- Dried beans and peas
- Greens, except kale

Other Foods
- Bran/bran products
- Chocolate (1.5-2 ounce)
- Granola
- Milk, all types (1 cup)
- Molasses (1 tablespoon)
- Nutritional supplements
- Nuts and seeds (1 ounce)
- Peanut butter (2 tablespoons)
- Salt substitutes/lite salt
- Salt-free broth
- Yogurt

Clinical Take-Home Points

What Can We Do to Prevent Recurrent Hyperkalemia?

- Educate patient about low K⁺ diet
- Use appropriate diuretics for the level of kidney function
- If serum K⁺ >4.8 mEq/L and cannot use RAAS blockade where clearly indicated, use a K⁺ binder in initial low doses to facilitate its use
- Both can be used daily and do not interfere with almost all other agents being given
- Perform routine follow-up with the patient to ensure adherence and access to the drugs
Audience Q&A
Please remember to complete and submit your Post-Test and Evaluation for CME credit.

Missed anything?

Visit us at: www.peerview.com/hyperkalemiaFamily

- Download slides and Practice Aids
- Watch the online version of this activity
- Join the conversation on Twitter @PeerView

Thank you and have a good day.